PtdIns(3,4,5)P3-Dependent and -Independent Roles for PTEN in the Control of Cell Migration
نویسندگان
چکیده
BACKGROUND Phosphatase and tensin homolog (PTEN) mediates many of its effects on proliferation, growth, survival, and migration through its PtdIns(3,4,5)P(3) lipid phosphatase activity, suppressing phosphoinositide 3-kinase (PI3K)-dependent signaling pathways. PTEN also possesses a protein phosphatase activity, the role of which is less well characterized. RESULTS We have investigated the role of PTEN in the control of cell migration of mesoderm cells ingressing through the primitive streak in the chick embryo. Overexpression of PTEN strongly inhibits the epithelial-to-mesenchymal transition (EMT) of mesoderm cells ingressing through the anterior and middle primitive streak, but it does not affect EMT of cells located in the posterior streak. The inhibitory activity on EMT is completely dependent on targeting PTEN through its C-terminal PDZ binding site, but can be achieved by a PTEN mutant (PTEN G129E) with only protein phosphatase activity. Expression either of PTEN lacking the PDZ binding site or of the PTEN C2 domain, or inhibition of PI3K through specific inhibitors, does not inhibit EMT, but results in a loss of both cell polarity and directional migration of mesoderm cells. The PTEN-related protein TPTE, which normally lacks any detectable lipid and protein phosphatase activity, can be reactivated through mutation, and only this reactivated mutant leads to nondirectional migration of these cells in vivo. CONCLUSIONS PTEN modulates cell migration of mesoderm cells in the chick embryo through at least two distinct mechanisms: controlling EMT, which involves its protein phosphatase activity; and controlling the directional motility of mesoderm cells, through its lipid phosphatase activity.
منابع مشابه
Regulation of PI3K effector signalling in cancer by the phosphoinositide phosphatases
Class I phosphoinositide 3-kinase (PI3K) generates phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) at the plasma membrane in response to growth factors, activating a signalling cascade that regulates many cellular functions including cell growth, proliferation, survival, migration and metabolism. The PI3K pathway is commonly dysregulated in human cancer, and drives tumorigenesis by p...
متن کاملPTEN at a glance.
Since its discovery in 1997 (Li and Sun, 1997; Li et al., 1997; Steck et al., 1997), the phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P3] phosphatase and tensin homolog (PTEN) has been established as one of the most frequently mutated tumor suppressor genes in human cancer. PTEN is a phosphatase that catalyzes the conversion of the lipid second messenger PtdIns (3,4,5)P3 to phosphat...
متن کاملLocalization of agonist-sensitive PtdIns(3,4,5)P3 reveals a nuclear pool that is insensitive to PTEN expression.
Phosphatidylinositol (3,4,5) trisphosphate [PtdIns(3,4,5)P3] is a lipid second messenger, produced by Type I phosphoinositide 3-kinases (PI 3-kinases), which mediates intracellular responses to many growth factors. Although PI 3-kinases are implicated in events at both the plasma membrane and intracellular sites, including the nucleus, direct evidence for the occurrence of PtdIns(3,4,5)P3 at no...
متن کاملIn vivo analysis of 3-phosphoinositide dynamics during Dictyostelium phagocytosis and chemotaxis.
Phagocytosis and chemotaxis are receptor-mediated processes that require extensive rearrangements of the actin cytoskeleton, and are controlled by lipid second messengers such as phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] and phosphatidylinositol 3,4-bisphosphate [PtdIns(3,4)P2]. We used a panel of pleckstrin homology (PH) domains with distinct binding specificities for PtdIns(3...
متن کاملSignaling via Class IA Phosphoinositide 3-Kinases (PI3K) in Human, Breast-Derived Cell Lines
We have addressed the differential roles of class I Phosphoinositide 3-kinases (PI3K) in human breast-derived MCF10a (and iso-genetic derivatives) and MDA-MB 231 and 468 cells. Class I PI3Ks are heterodimers of p110 catalytic (α, β, δ and γ) and p50-101 regulatory subunits and make the signaling lipid, phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) that can activate effectors, eg ...
متن کامل